LE STAGE PROFESSIONNEL / THE WORK PLACEMENT

VOCABULAIRE GÉNÉRAL / GENERAL VOCABULARY

- un stage professionnel a work (experience) placement
- chercher un stage professionnel to look for a work placement

- suivre un stage en entreprise dans le cadre de son cursus to do/take an industrial placement in a company as part of one's school or university course

- un stage en programmation informatique / en communication a placement in building construction

- un stage conventionné an official placement
- une convention de stage an work placement agreement
- un stage non rémunéré an unpaid work placement
- un maître de stage a placement supervisor, a mentor
- longueur du stage length of work placement
- à l'achèvement de la période de stage at the completion/conclusion of the placement period
- un certificat de stage a certificate (of completion) of training / a training certificate
- un rapport de stage a work experience report
- une soutenance de rapport devant un jury a viva in front of a board of examiners
- un stagiaire a trainee

- nous avons un stagiaire qui travaille dans notre bureau en ce moment we have a trainee working in our office right now

- travailler comme stagiaire pour une société to work as a trainee for a company

DESCRIBING THE TASKS IN BUILDING CONSTRUCTION

9. Construction Planning

Construction Planning

Basic Concepts in the Development of Construction Plans Choice of Technology and Construction Method Defining Work Tasks Defining Precedence Relationships Among Activities Estimating Activity Durations Estimating Resource Requirements for Work Activities Coding Systems References Problems Footnotes

9.1 Basic Concepts in the Development of Construction Plans

Construction planning is a fundamental and challenging activity in the management and execution of construction projects. It involves the choice of technology, the definition of work tasks, the estimation of the required resources and durations for individual tasks, and the identification of any interactions among the different work tasks. A good construction plan is the basis for developing the budget and the schedule for work. Developing the construction plan is a critical task in the management of construction, even if the plan is not

written or otherwise formally recorded. In addition to these technical aspects of construction planning, it may also be necessary to make organizational decisions about the relationships between project participants and even which organizations to include in a project. For example, the extent to which sub-contractors will be used on a project is often determined during construction planning.

Forming a construction plan is a highly challenging task. As Sherlock Holmes noted:

Most people, if you describe a train of events to them, will tell you what the result would be. They can put those events together in their minds, and argue from them that something will come to pass. There are few people, however, who, if you told them a result, would be able to evolve from their own inner consciousness what the steps were which led up to that result. This power is what I mean when I talk of reasoning backward.

Like a detective, a planner begins with a result (i.e. a facility design) and must synthesize the steps required to yield this result. Essential aspects of construction planning include the *generation* of required activities, *analysis* of the implications of these activities, and *choice* among the various alternative means of performing activities. In contrast to a detective discovering a single train of events, however, construction planners also face the normative problem of choosing the best among numerous alternative plans. Moreover, a detective is faced with an observable result, whereas a planner must imagine the final facility as described in the plans and specifications.

In developing a construction plan, it is common to adopt a primary emphasis on either cost control or on schedule control as illustrated in Fig. 9-1. Some projects are primarily divided into expense categories with associated costs. In these cases, construction planning is cost or expense oriented. Within the categories of expenditure, a distinction is made between costs incurred directly in the performance of an activity and indirectly for the accomplishment of the project. For example, borrowing expenses for project financing and overhead items are commonly treated as indirect costs. For other projects, scheduling of work activities over time is critical and is emphasized in the planning process. In this case, the planner insures that the proper precedences among activities are maintained and that efficient scheduling of the available resources prevails. Traditional scheduling procedures emphasize the maintenance of task precedences (resulting in *critical path scheduling* procedures) or efficient use of resources over time (resulting in *job shop scheduling* procedures). Finally, most complex projects require consideration of both cost and scheduling over time, so that planning, monitoring and record keeping must consider both dimensions. In these cases, the integration of schedule and budget information is a major concern.

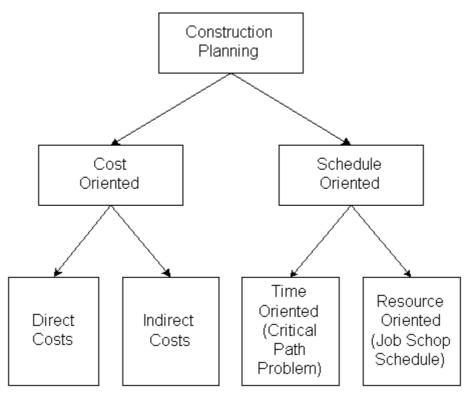


Figure 9-1 Alternative Emphases in Construction Planning

In this chapter, we shall consider the functional requirements for construction planning such as technology

choice, work breakdown, and budgeting. Construction planning is not an activity which is restricted to the period after the award of a contract for construction. It should be an essential activity during the facility design. Also, if problems arise during construction, re-planning is required.

9.2 Choice of Technology and Construction Method

As in the development of appropriate alternatives for facility design, choices of appropriate technology and methods for construction are often ill-structured yet critical ingredients in the success of the project. For example, a decision whether to pump or to transport concrete in buckets will directly affect the cost and duration of tasks involved in building construction. A decision between these two alternatives should consider the relative costs, reliabilities, and availability of equipment for the two transport methods. Unfortunately, the exact implications of different methods depend upon numerous considerations for which information may be sketchy during the planning phase, such as the experience and expertise of workers or the particular underground condition at a site.

In selecting among alternative methods and technologies, it may be necessary to formulate a number of construction plans based on alternative methods or assumptions. Once the full plan is available, then the cost, time and reliability impacts of the alternative approaches can be reviewed. This examination of several alternatives is often made explicit in bidding competitions in which several alternative designs may be proposed or *value engineering* for alternative construction methods may be permitted. In this case, potential constructors may wish to prepare plans for each alternative design using the suggested construction method as well as to prepare plans for alternative construction methods which would be proposed as part of the value engineering process.

In forming a construction plan, a useful approach is to simulate the construction process either in the imagination of the planner or with a formal computer based simulation technique. By observing the result, comparisons among different plans or problems with the existing plan can be identified. For example, a decision to use a particular piece of equipment for an operation immediately leads to the question of whether or not there is sufficient access space for the equipment. Three dimensional geometric models in a computer aided design (CAD) system may be helpful in simulating space requirements for operations and for identifying any interferences. Similarly, problems in resource availability identified during the simulation of the construction process might be effectively forestalled by providing additional resources as part of the construction plan.

Example 9-1: A roadway rehabilitation

An example from a roadway rehabilitation project in Pittsburgh, PA can serve to illustrate the importance of good construction planning and the effect of technology choice. In this project, the decks on overpass bridges as well as the pavement on the highway itself were to be replaced. The initial construction plan was to work outward from each end of the overpass bridges while the highway surface was replaced below the bridges. As a result, access of equipment and concrete trucks to the overpass bridges was a considerable problem. However, the highway work could be staged so that each overpass bridge deck from the highway below, costs were reduced and the work was accomplished much more quickly.

Example 9-2: Laser Leveling

An example of technology choice is the use of laser leveling equipment to improve the productivity of excavation and grading. In these systems, laser surveying equipment is erected on a site so that the relative height of mobile equipment is known exactly. This height measurement is accomplished by flashing a rotating laser light on a level plane across the construction site and observing exactly where the light shines on receptors on mobile equipment such as graders. Since laser light does not disperse appreciably, the height at which the laser shines anywhere on the construction site gives an accurate indication of the height of a receptor on a piece of mobile equipment. In turn, the receptor height can be used to measure the height of a blade, excavator bucket or other piece of equipment. Combined with electro-hydraulic control systems mounted on mobile equipment such as bulldozers, graders and scrapers, the height of excavation and grading blades can be precisely and automatically controlled in these systems. This automation of blade heights has reduced costs in some cases by over 80% and improved quality in the finished product, as measured by the desired amount of excavation or the extent to which a final grade achieves the desired angle. These systems also permit the use of smaller machines and less skilled operators. However, the use of these semi-automated systems require investments in the laser surveying equipment as well as modification to equipment to permit electronic feedback control units. Still, laser leveling appears to be an excellent technological choice in many instances.